# Differences

This shows you the differences between two versions of the page.

 reduced_distribution_function [2013/11/05 19:02]nikolaj reduced_distribution_function [2014/03/21 11:11] (current) Both sides previous revision Previous revision 2013/11/06 19:13 nikolaj 2013/11/05 19:02 nikolaj 2013/11/05 19:01 nikolaj 2013/11/05 19:00 nikolaj 2013/11/05 19:00 nikolaj 2013/11/05 19:00 nikolaj 2013/11/05 18:59 nikolaj 2013/11/05 18:57 nikolaj 2013/11/05 18:56 nikolaj old revision restored (2013/11/05 18:49) Next revision Previous revision 2013/11/06 19:13 nikolaj 2013/11/05 19:02 nikolaj 2013/11/05 19:01 nikolaj 2013/11/05 19:00 nikolaj 2013/11/05 19:00 nikolaj 2013/11/05 19:00 nikolaj 2013/11/05 18:59 nikolaj 2013/11/05 18:57 nikolaj 2013/11/05 18:56 nikolaj old revision restored (2013/11/05 18:49) Line 1: Line 1: ===== Reduced distribution function === ===== Reduced distribution function === - ==== Definition ​==== + ==== Set ==== - | @#88DDEE: $\rho$ ... Classical probability density function | + | @#55CCEE: context ​    | @#55CCEE: $\rho$ ... Classical probability density function | - | @#DDDDDD: $N \equiv \mathrm{dim}(\mathcal M)$ | + | @#DDDDDD: range       | @#DDDDDD: $N \equiv \mathrm{dim}(\mathcal M)$ | | $s < N$ | | $s < N$ | - | @#FFBB00: $f_s(q^1,​p_1,​q^2,​p_2,​\dots,​q^s,​p_s):​=\int\ \rho\ \ \mathrm d q^{s+1} \mathrm d p_{s+1}\cdots \mathrm d q^N \mathrm d p_N$ | + | @#FFBB00: definiendum ​| @#FFBB00: $\bar f_s(q^1,​p_1,​q^2,​p_2,​\dots,​q^s,​p_s):​=\int\ \rho\ \ \mathrm d q^{s+1} \mathrm d p_{s+1}\cdots \mathrm d q^N \mathrm d p_N$ | ==== Discussion ==== ==== Discussion ==== We also set $f_N:​=\rho$,​ but that's just introduction of different notation. We also set $f_N:​=\rho$,​ but that's just introduction of different notation. - - Relevant for discussions of kinetics on the intermediate level $f_1$ and $f_2$. And maybe $f_3$ if you're mad enough. ==== Parents ==== ==== Parents ==== - === Requirements ​=== + === Context ​=== [[Classical probability density function]] [[Classical probability density function]] 