Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
riemann_zeta_function [2016/05/31 20:20]
nikolaj
riemann_zeta_function [2016/06/03 22:50]
nikolaj
Line 20: Line 20:
 == Functional equation ==  == Functional equation == 
 Tells you most values: Tells you most values:
-^ $ \zeta(s) = 2(2\pi)^{s-1}\sin{\left(\pi\,​s/​2\right)}\,​\Gamma(1-s)\,​\zeta(1-s)$ ^+^ $ \zeta(s) = 2\,(2\pi)^{s-1}\sin{\left(\pi\,​s/​2\right)}\,​\Gamma(1-s)\,​\zeta(1-s)$ ^
  
 == Specific values == == Specific values ==
Line 27: Line 27:
  
 so that so that
 +
 +$\zeta(1-2m) = \dfrac{2(2m-1)!}{(4\pi^2)^m}\cos(m\pi)\zeta(2m)$
  
 $\zeta(1-2m)=(-1)^{m+1}\frac{1}{2m}B_{2m}$ $\zeta(1-2m)=(-1)^{m+1}\frac{1}{2m}B_{2m}$
Line 74: Line 76:
 ${\frac {1} {n^s}} = {\frac {1} {\Gamma(s)}} \int_0^\infty x^{s-1} {\mathrm e}^{-nx}\,​{\mathrm d}x $ ${\frac {1} {n^s}} = {\frac {1} {\Gamma(s)}} \int_0^\infty x^{s-1} {\mathrm e}^{-nx}\,​{\mathrm d}x $
  
-and thenrecognizing ​the geometric series ​+and thus 
 + 
 +$\sum_{n=1}^\infty \frac{1}{n^s} = \frac{1} { \Gamma(s) } \sum_{n=1}^\infty \int_0^\infty x^{s-1} {\mathrm e}^{-nx}\,{\mathrm d}x $ 
 + 
 +Now consider ​the geometric series
  
 $\sum_{n=1}^\infty ({\mathrm e}^{-x})^n = \frac{1} { {\mathrm e}^{-x}-1} = \frac{1} {x} - \frac{1}{2} + \frac{1}{12}x+O(x^2)$ $\sum_{n=1}^\infty ({\mathrm e}^{-x})^n = \frac{1} { {\mathrm e}^{-x}-1} = \frac{1} {x} - \frac{1}{2} + \frac{1}{12}x+O(x^2)$
  
-give you+The above sum over the integral is convergent for $s>1$, while the expression 
 + 
 +$\frac{1} { \Gamma(s) } \int_0^\infty \frac{x^{s-1}} { {\mathrm e}^x-1} \, {\mathrm d}x $
  
-$\sum_{n=1}^\infty \frac{1}{n^s} = \frac{1} { \Gamma(s) } \int_0^\infty \frac{x^{s-1}} { {\mathrm e}^x-1} \, {\mathrm d}x $+works for all complex ​$s\ne 1$. We thus found the analytical continuation.
  
-He takes the integral into the complex plane, where he $ \frac{1} { {\mathrm e}^x-1}$ diverges periodically in steps of $2\pi\,​i$. ​+The integrand ​$ \frac{1} { {\mathrm e}^x-1}$ diverges periodically in steps of $2\pi\,​i$. ​
 He discovers that the function obeys a reflection formula He discovers that the function obeys a reflection formula
  
Link to graph
Log In
Improvements of the human condition