Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
smooth_function_of_a_linear_operator [2015/01/20 13:19]
nikolaj
smooth_function_of_a_linear_operator [2015/03/01 15:55] (current)
nikolaj
Line 7: Line 7:
 Let $A(z),B(z)$ be function with expansion around $a,b$, respectively. ​ Let $A(z),B(z)$ be function with expansion around $a,b$, respectively. ​
  
-$A(D)\,B(X) +$A(D)\,​B(X)=\sum_{k=0}^\infty A^{(k)}(a) \dfrac{1}{k!} (D-a)^k \cdot
-=\sum_{k=0}^\infty A^{(k)}(a) \dfrac{1}{k!} (D-a)^k \cdot+
  ​\sum_{j=0}^\infty B^{(j)}(b) \dfrac{1}{j!} (X-b)^j ​  ​\sum_{j=0}^\infty B^{(j)}(b) \dfrac{1}{j!} (X-b)^j ​
 $ $
Line 16: Line 15:
 For $D$ a linear operator with $D^{n+1}X^{n}=0$ in an $\mathbb C$-algebra with unit and infinite sums, we find For $D$ a linear operator with $D^{n+1}X^{n}=0$ in an $\mathbb C$-algebra with unit and infinite sums, we find
  
-$A(D)\,B(X) +$A(D)\,B(X) =\sum_{j=0}^\infty B^{(j)}(b) \dfrac{1}{j!}
- =\sum_{j=0}^\infty B^{(j)}(b) \dfrac{1}{j!}+
  ​\left( ​  ​\left( ​
  ​\sum_{k=0}^j ​      ​A^{(k)}(a) \dfrac{1}{k!} (D-a)^k (X-b)^j ​  ​\sum_{k=0}^j ​      ​A^{(k)}(a) \dfrac{1}{k!} (D-a)^k (X-b)^j ​
Line 30: Line 28:
 and find and find
  
-$A(D)\,B(X) +$A(D)\,B(X) =\sum_{j=0}^\infty B^{(j)}(b) \dfrac{1}{j!}
- =\sum_{j=0}^\infty B^{(j)}(b) \dfrac{1}{j!}+
  ​\left(  ​\left(
  ​\sum_{k=0}^j ​     A^{(k)}(0) {\large{j \choose k}} Y^k (X-b)^{j-k}  ​\sum_{k=0}^j ​     A^{(k)}(0) {\large{j \choose k}} Y^k (X-b)^{j-k}
Line 42: Line 39:
 and find and find
  
-$A(D)\,​B(X) ​ +$A(D)\,B(X) =\sum_{j=0}^\infty B^{(j)}(b) \dfrac{1}{j!} (Y+(X-b))^j=B(Y+X)$.
- =\sum_{j=0}^\infty B^{(j)}(b) \dfrac{1}{j!} (Y+(X-b))^j +
- =B(Y+X)$.+
  
 == Direct prove == == Direct prove ==
Line 50: Line 45:
 Note that the last bit can be proven more directly by Taylor expansion of $f(x+h)$ around $x$: Note that the last bit can be proven more directly by Taylor expansion of $f(x+h)$ around $x$:
  
-$f(x+d)=\sum_{k=0}^\infty\frac{1}{k!}(\frac{\partial^k}{\partial x^k}f(x))\cdot((x+h)-x)^k=\sum_{k=0}^\infty\frac{1}{k!}\left(d\frac{\partial}{\partial x}\right)^k f(x)=\exp(h\frac{\partial}{\partial x})\,f(x)$.+$f(x+h)=\sum_{k=0}^\infty\frac{1}{k!}f^{(k)}(x)\cdot((x+h)-x)^k=\sum_{k=0}^\infty\frac{1}{k!}\left(h\frac{\partial}{\partial x}\right)^k f(x)=\exp(h\frac{\partial}{\partial x})\,f(x)$.
  
-Curiously, note how+Curiously, note how therefore the approximation to a tangent can be expressed as
  
-$\dfrac{\partial}{\partial x}\,​f(x)=\lim_{h\to 0}\dfrac{f(x+h)-f(x)}{h}=\lim_{h\to 0}\dfrac{\exp(h\frac{\partial}{\partial x})-1}{h}f(x)$+$\dfrac{f(x+h)-f(x)}{h}=\dfrac{\exp(h\frac{\partial}{\partial x})-1}{h}f(x)$
- +
-$f(x)=\lim_{h\to 0}\dfrac{\exp(h\frac{\partial}{\partial x})-1}{h}\int_0^x f(y)\,​{\mathrm d}y$.+
  
 === References === === References ===
Link to graph
Log In
Improvements of the human condition