Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
students_t_distribution [2015/11/30 11:26]
nikolaj
students_t_distribution [2015/11/30 11:44]
nikolaj
Line 3: Line 3:
 | @#FF9944: definition ​ | @#FF9944: $f:$ ?? | | @#FF9944: definition ​ | @#FF9944: $f:$ ?? |
 | @#FF9944: definition ​ | @#FF9944: $f(t, \nu) := \dfrac{1}{\nu^{\frac{1}{2}}{\mathrm B}(\frac{1}{2},​\frac{\nu}{2})}\cdot\left(1+\dfrac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}$ | | @#FF9944: definition ​ | @#FF9944: $f(t, \nu) := \dfrac{1}{\nu^{\frac{1}{2}}{\mathrm B}(\frac{1}{2},​\frac{\nu}{2})}\cdot\left(1+\dfrac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}$ |
 +
 +>todo
  
 ----- -----
Line 11: Line 13:
 $\lim_{n\to\infty}\left(1+\dfrac{x}{n}\right)^{a\,​n+b}=\lim_{n\to\infty}\left(1+\dfrac{a\,​x}{n}\right)^n={\mathrm e}^{a\,x}$. $\lim_{n\to\infty}\left(1+\dfrac{x}{n}\right)^{a\,​n+b}=\lim_{n\to\infty}\left(1+\dfrac{a\,​x}{n}\right)^n={\mathrm e}^{a\,x}$.
  
-here the normalization:​+Here the normalization:​
  
 <​code>​ <​code>​
 Plot[Sqrt[n/​(2*Pi)]*Beta[1/​2,​n/​2],​{n,​-6,​6}] Plot[Sqrt[n/​(2*Pi)]*Beta[1/​2,​n/​2],​{n,​-6,​6}]
 </​code>​ </​code>​
 +
 +== Relation to the Cauchy distribution ==
 +>todo
  
 === Theorems === === Theorems ===
 +>todo
 +
 === Reference === === Reference ===
 Wikipedia: ​ Wikipedia: ​
Link to graph
Log In
Improvements of the human condition