Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
total_derivative [2015/03/28 16:28]
nikolaj
total_derivative [2015/03/28 16:36]
nikolaj
Line 1: Line 1:
 ===== Total derivative ===== ===== Total derivative =====
 ==== Function ==== ==== Function ====
-| @#FF9944: definition ​ | @#FF9944: $\dfrac{{\mathrm d}}{{\mathrm d}t}:​\left(X_1\times\cdots \times X_n\times{\mathbb R}\to{\mathbb R}\right)\to \left({\mathbb R}\to X_1\times\cdots \times X_n\right)\times ​\left({\mathbb R}\to {\mathbb R}\right)$ |+| @#FF9944: definition ​ | @#FF9944: $\dfrac{{\mathrm d}}{{\mathrm d}t}:​\left(X_1\times\cdots \times X_n\times{\mathbb R}\to{\mathbb R}\right)\to ​\left(\left({\mathbb R}\to X_1\times\cdots \times X_n\right)\times {\mathbb R}\right)\to {\mathbb R}$ |
 | @#BBDDEE: let         | @#BBDDEE: $\diamond\ f(x^1,​\dots,​x^n,​t)$ | | @#BBDDEE: let         | @#BBDDEE: $\diamond\ f(x^1,​\dots,​x^n,​t)$ |
 | @#FF9944: definition ​ | @#FF9944: $\left(\dfrac{{\mathrm d}}{{\mathrm d}t}f\right)\left(t\mapsto\langle r^1(t),​\dots,​r^n(t)\rangle,​t\right):​=\sum_{j=1}^n \dfrac{\partial f}{\partial x^j}(\langle r^1(t),​\dots,​r^n(t),​t\rangle)\cdot\dfrac{\partial r^j}{\partial t}(t)+\dfrac{\partial f}{\partial t}(\langle r^1(t),​\dots,​r^n(t),​t\rangle)$ | | @#FF9944: definition ​ | @#FF9944: $\left(\dfrac{{\mathrm d}}{{\mathrm d}t}f\right)\left(t\mapsto\langle r^1(t),​\dots,​r^n(t)\rangle,​t\right):​=\sum_{j=1}^n \dfrac{\partial f}{\partial x^j}(\langle r^1(t),​\dots,​r^n(t),​t\rangle)\cdot\dfrac{\partial r^j}{\partial t}(t)+\dfrac{\partial f}{\partial t}(\langle r^1(t),​\dots,​r^n(t),​t\rangle)$ |
Line 7: Line 7:
 ----- -----
 === Example === === Example ===
-The total derivative of the function+The total derivative of the (not explicitly time dependent) ​function
  
 $f:{\mathbb R}^3\to{\mathbb R}, \ \ \ f(x,​y,​t):​=x^2\cos(y)$ $f:{\mathbb R}^3\to{\mathbb R}, \ \ \ f(x,​y,​t):​=x^2\cos(y)$
Line 19: Line 19:
 $\left(\dfrac{{\mathrm d}}{{\mathrm d}t}f\right)(R,​t)=2\,​R_x(t)\cos(R_y(t))\cdot R_x'​(t)+R_x(t)^2\sin(R_y(t))\cdot R_y'​(t)$ $\left(\dfrac{{\mathrm d}}{{\mathrm d}t}f\right)(R,​t)=2\,​R_x(t)\cos(R_y(t))\cdot R_x'​(t)+R_x(t)^2\sin(R_y(t))\cdot R_y'​(t)$
  
-$=2\,7^2\,​t\cos(-3t^5)-3\,5\,7^2)\,​t^{2+4}\sin(-3t^5)$+$=2\cdot 7^2\,​t\cos(-3t^5)-3\cdot 5\cdot 7^2\,​t^{2+4}\sin(-3t^5)$
  
 === Reference === === Reference ===
Link to graph
Log In
Improvements of the human condition