Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
total_order [2013/09/04 17:04]
nikolaj removed
total_order [2014/03/21 11:11] (current)
Line 1: Line 1:
 ===== Total order ===== ===== Total order =====
-==== Definition ​==== +==== Set ==== 
-| @#88DDEE: $X$ |+| @#55CCEE: context ​    | @#55CCEE: $X$ |
  
-| @#FFBB00: $ \le \in \text{TotalOrd}(X) $ |+| @#FFBB00: definiendum ​| @#FFBB00: $ \le\in\ \mathrm{it} $ |
  
-x\in \mathrm{dom}(\le|+The relation ​$\le$ is an order relation if it's in the intersection of all total, all anti-symmetric and all transitive relation. Hence 
  
-| @#55EE55$ x \le y\ \lor\ y\le x $ | +| @#55CCEEcontext ​    | @#55CCEE: $ \le\ \in\ \mathrm{Rel}(X) $ | 
-| @#55EE55: $ (x\le y) \land (y\le x) \implies ​(x=y) $ | +| $ x,y,z \in X $ |
-@#​55EE55: ​(\le y) \land (y \le z\Leftrightarrow (x\le z) $ |+
  
-Here we use infix notation: $x\le y\ \equiv\ \le(x,y)$.+| @#55EE55: postulate ​  | @#55EE55: $ x \le y\ \lor\le x $ | 
 +| @#55EE55: postulate ​  | @#55EE55: $ x\le y\ \land\ y\le x \implies ​(x=y) $ 
 +| @#55EE55: postulate ​  | @#55EE55: $ x \le y\ \land\ y \le z \Leftrightarrow x\le z $ |
  
 ==== Discussion ==== ==== Discussion ====
-The relation $\le$ is an order relation if it's in the intersection of all reflexive, all anti-symmetric and all transitive relation. Hence  
- 
-The first axiom $ x \le y\ \lor\ y\le x $ is called //​totality//​ and implies $ x \le x $. Therefore a linear order is a partial order, although the converse is not true in general. 
 === Reference === === Reference ===
-Wikipedia: [[http://​en.wikipedia.org/​wiki/​Order_relation|Order theory]] +Wikipedia: [[http://​en.wikipedia.org/​wiki/​Total_order|Total order]] 
-==== Context ​====+==== Parents ​====
 === Subset of === === Subset of ===
-[[Total relation]]+[[Total relation]], [[Non-strict partial order]]
Link to graph
Log In
Improvements of the human condition