Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
total_order [2013/09/08 14:57]
nikolaj
total_order [2014/03/21 11:11] (current)
Line 1: Line 1:
 ===== Total order ===== ===== Total order =====
-==== Definition ​==== +==== Set ==== 
-| @#88DDEE: $X$ |+| @#55CCEE: context ​    | @#55CCEE: $X$ |
  
-| @#FFBB00: $ \le\ \in\ \mathrm{it} $ |+| @#FFBB00: definiendum ​| @#FFBB00: $ \le\ \in\ \mathrm{it} $ |
  
 The relation $\le$ is an order relation if it's in the intersection of all total, all anti-symmetric and all transitive relation. Hence  The relation $\le$ is an order relation if it's in the intersection of all total, all anti-symmetric and all transitive relation. Hence 
  
-| @#88DDEE: $ \le\ \in\ \mathrm{Rel}(X) $ |+| @#55CCEE: context ​    | @#55CCEE: $ \le\ \in\ \mathrm{Rel}(X) $ |
 | $ x,y,z \in X $ | | $ x,y,z \in X $ |
  
-| @#55EE55: $ x \le y\ \lor\ y \le x $ | +| @#55EE55: postulate ​  | @#55EE55: $ x \le y\ \lor\ y \le x $ | 
-| @#55EE55: $ x\le y\ \land\ y\le x \implies (x=y) $ | +| @#55EE55: postulate ​  | @#55EE55: $ x\le y\ \land\ y\le x \implies (x=y) $ | 
-| @#55EE55: $ x \le y\ \land\ y \le z \Leftrightarrow x\le z $ |+| @#55EE55: postulate ​  | @#55EE55: $ x \le y\ \land\ y \le z \Leftrightarrow x\le z $ |
  
 ==== Discussion ==== ==== Discussion ====
Link to graph
Log In
Improvements of the human condition