# Differences

This shows you the differences between two versions of the page.

 total_order [2013/09/08 14:55]nikolaj created total_order [2014/03/21 11:11] (current) Both sides previous revision Previous revision 2013/09/08 14:57 nikolaj 2013/09/08 14:55 nikolaj created2013/09/04 17:04 nikolaj removed2013/09/04 16:58 nikolaj created Next revision Previous revision 2013/09/08 14:57 nikolaj 2013/09/08 14:55 nikolaj created2013/09/04 17:04 nikolaj removed2013/09/04 16:58 nikolaj created Line 1: Line 1: ===== Total order ===== ===== Total order ===== - ==== Definition ​==== + ==== Set ==== - | @#88DDEE: $X$ | + | @#55CCEE: context ​    | @#55CCEE: $X$ | - | @#FFBB00: $\le\ \in\ \mathrm{it}$ | + | @#FFBB00: definiendum ​| @#FFBB00: $\le\ \in\ \mathrm{it}$ | The relation $\le$ is an order relation if it's in the intersection of all total, all anti-symmetric and all transitive relation. Hence The relation $\le$ is an order relation if it's in the intersection of all total, all anti-symmetric and all transitive relation. Hence - | @#88DDEE: $\le\ \in\ \mathrm{Rel}(X)$ | + | @#55CCEE: context ​    | @#55CCEE: $\le\ \in\ \mathrm{Rel}(X)$ | | $x,y,z \in X$ | | $x,y,z \in X$ | - | @#55EE55: $x \le y\ \lor\ y \le x$ | + | @#55EE55: postulate ​  | @#55EE55: $x \le y\ \lor\ y \le x$ | - | @#55EE55: $x\le y\ \land\ y\le x \implies (x=y)$ | + | @#55EE55: postulate ​  | @#55EE55: $x\le y\ \land\ y\le x \implies (x=y)$ | - | @#55EE55: $x \le y\ \land\ y \le z \Leftrightarrow x\le z$ | + | @#55EE55: postulate ​  | @#55EE55: $x \le y\ \land\ y \le z \Leftrightarrow x\le z$ | ==== Discussion ==== ==== Discussion ==== Line 19: Line 19: ==== Parents ==== ==== Parents ==== === Subset of === === Subset of === - [[Total relation]], [[Anti-symmetric relation]], [[Transitive relation]] + [[Total relation]], [[Non-strict partial order]] 