Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
two-body_problem [2013/11/09 20:36]
nikolaj
two-body_problem [2014/03/21 11:11]
127.0.0.1 external edit
Line 1: Line 1:
 ===== Two-body problem ===== ===== Two-body problem =====
-==== Definition ​==== +==== Set ==== 
-| @#FFBB00: $\langle \mathbb R^{2\times 3}, H\rangle \in \mathrm{it} $ ... Classical Hamiltonian system |+| @#FFBB00: definiendum ​| @#FFBB00: $\langle \mathbb R^{2\times 3}, H\rangle \in \mathrm{it} $ ... Classical Hamiltonian system |
  
-| @#55EE55: $ H({\bf r}_1,{\bf r}_2,{\bf p}_1,{\bf p}_2) = \frac{1}{m_1}\frac{1}{2}{\bf p}_1^2 + \frac{1}{m_2}\frac{1}{2}{\bf p}_2^2 + V(|{\bf r}_1-{\bf r}_2|) $ |+| @#55EE55: postulate ​  | @#55EE55: $ H({\bf r}_1,{\bf r}_2,{\bf p}_1,{\bf p}_2) = \frac{1}{m_1}\frac{1}{2}{\bf p}_1^2 + \frac{1}{m_2}\frac{1}{2}{\bf p}_2^2 + V(|{\bf r}_1-{\bf r}_2|) $ |
  
 ==== Discussion ==== ==== Discussion ====
 == Equations of motion in suitable coordinates == == Equations of motion in suitable coordinates ==
-| @#DDDDDD: $ M \equiv m_1+m_2 $ | +| @#DDDDDD: range       | @#DDDDDD: $ M \equiv m_1+m_2 $ | 
-| @#DDDDDD: $ \mu \equiv m_1 m_2/M $ |+| @#DDDDDD: range       | @#DDDDDD: $ \mu \equiv m_1 m_2/M $ |
  
 The following choice of coordinates eliminates the singles out the center of mass, which the Hamiltonian is independent of. The following choice of coordinates eliminates the singles out the center of mass, which the Hamiltonian is independent of.
  
-| @#DDDDDD: $ {\bf r} \equiv {\bf r}_2 - {\bf r}_1 $ | +| @#DDDDDD: range       | @#DDDDDD: $ {\bf r} \equiv {\bf r}_2 - {\bf r}_1 $ | 
-| @#DDDDDD: $ {\bf R} \equiv (m_1\ {\bf r}_1 + m_2\ {\bf r}_2)/M $ | +| @#DDDDDD: range       | @#DDDDDD: $ {\bf R} \equiv (m_1\ {\bf r}_1 + m_2\ {\bf r}_2)/M $ | 
-| @#DDDDDD: $ {\bf p} \equiv (m_1\ {\bf p}_2 - m_2\ {\bf p}_1)/M $ | +| @#DDDDDD: range       | @#DDDDDD: $ {\bf p} \equiv (m_1\ {\bf p}_2 - m_2\ {\bf p}_1)/M $ | 
-| @#DDDDDD: $ {\bf P} \equiv {\bf p}_1 + {\bf p}_2 $ |+| @#DDDDDD: range       | @#DDDDDD: $ {\bf P} \equiv {\bf p}_1 + {\bf p}_2 $ |
  
-| @#DDDDDD: $ r \equiv |{\bf r}| $ |+| @#DDDDDD: range       | @#DDDDDD: $ r \equiv |{\bf r}| $ |
  
 ^ $ H({\bf r},{\bf R},{\bf p},{\bf R}) = \frac{1}{M}\frac{1}{2}{\bf P}^2 + \frac{1}{\mu}\frac{1}{2}{\bf p}^2 + V(r) $ ^ ^ $ H({\bf r},{\bf R},{\bf p},{\bf R}) = \frac{1}{M}\frac{1}{2}{\bf P}^2 + \frac{1}{\mu}\frac{1}{2}{\bf p}^2 + V(r) $ ^
Line 31: Line 31:
  
 == Scattering process == == Scattering process ==
-| @#DDDDDD: $ {\bf g} \equiv \frac{\partial}{\partial t}{\bf r} $ | +| @#DDDDDD: range       | @#DDDDDD: $ {\bf g} \equiv \frac{\partial}{\partial t}{\bf r} $ | 
-| @#DDDDDD: $ {\bf g}_{-\infty} \equiv \lim_{t\to-\infty}{\bf g} $ | +| @#DDDDDD: range       | @#DDDDDD: $ {\bf g}_{-\infty} \equiv \lim_{t\to-\infty}{\bf g} $ | 
-| @#DDDDDD: $ {\bf g}_{+\infty} \equiv \lim_{t\to+\infty}{\bf g} $ |+| @#DDDDDD: range       | @#DDDDDD: $ {\bf g}_{+\infty} \equiv \lim_{t\to+\infty}{\bf g} $ |
  
 Geometric considerations lead to the conclusion that there is a unit vector ${\bf \alpha}^V$, depending on the particle interaction potential $V$, with Geometric considerations lead to the conclusion that there is a unit vector ${\bf \alpha}^V$, depending on the particle interaction potential $V$, with
  
-| @#DDDDDD: $ S_{ij} \equiv \delta_{ij}-2\alpha_i^V\alpha_j^V $ |+| @#DDDDDD: range       | @#DDDDDD: $ S_{ij} \equiv \delta_{ij}-2\alpha_i^V\alpha_j^V $ |
 ^ $ {\bf g}_{+\infty} = S\ {\bf g}_{-\infty} $ ^  ^ $ {\bf g}_{+\infty} = S\ {\bf g}_{-\infty} $ ^ 
  
Link to graph
Log In
Improvements of the human condition