Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
x_x [2016/03/20 02:29]
nikolaj
x_x [2016/04/05 09:33]
nikolaj
Line 8: Line 8:
 == Representations == == Representations ==
  
-^ $x^x={\mathrm e}^{x\log(x)}$ ^+^ $x^x={\mathrm e}^{x\log(x)}=\left({\mathrm e}^x\right)^{\log(x)}$ ^ 
 + 
 +>todo: write down the above with an expanded $\log$ to third order
  
 Because of this, the local minimum of $x^x$ is that of $x\log(x)$, namely $\frac{1}{\mathrm e}\approx 0.37$, and then see Because of this, the local minimum of $x^x$ is that of $x\log(x)$, namely $\frac{1}{\mathrm e}\approx 0.37$, and then see
Line 35: Line 37:
 == An integral == == An integral ==
 $P_n(x) := (1-x) \, x^n \prod_{k=0}^{n-1} \, (x+k)$ $P_n(x) := (1-x) \, x^n \prod_{k=0}^{n-1} \, (x+k)$
 +
 +>this must come from the Expression at the beginning, but I don't know how I arrived there. ​
 +>Maybe there I switched from $x$ to $1-x$ or $\int_0^1$ to $\int_1^0$.
  
 $\int_0^1 \, x^x \, dx = \sum_{n=0}^\infty \frac{1}{n!} \int_0^1 \, P_n(x) ​ \, dx = \frac{1}{2} + \frac{1}{12} + \frac{1}{24} + \frac{131}{5040} + \frac{1093}{60480} + \dots$ $\int_0^1 \, x^x \, dx = \sum_{n=0}^\infty \frac{1}{n!} \int_0^1 \, P_n(x) ​ \, dx = \frac{1}{2} + \frac{1}{12} + \frac{1}{24} + \frac{131}{5040} + \frac{1093}{60480} + \dots$
Link to graph
Log In
Improvements of the human condition