Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
x_x [2016/04/05 09:29]
nikolaj
x_x [2020/01/10 23:08]
nikolaj
Line 8: Line 8:
 == Representations == == Representations ==
  
-^ $x^x={\mathrm e}^{x\log(x)}$ ^+^ $x^x={\mathrm e}^{x\log(x)}=\left({\mathrm e}^x\right)^{\log(x)}$ ^ 
 + 
 +>todo: write down the above with an expanded $\log$ to third order
  
 Because of this, the local minimum of $x^x$ is that of $x\log(x)$, namely $\frac{1}{\mathrm e}\approx 0.37$, and then see Because of this, the local minimum of $x^x$ is that of $x\log(x)$, namely $\frac{1}{\mathrm e}\approx 0.37$, and then see
Line 15: Line 17:
 Furthermore Furthermore
  
-^ $x^x = \sum_{n=0}^\infty \prod_{k=1}^n (1-x)\left(1-\frac{1+x}{k}\right) = \sum_{n=0}^\infty \frac{1}{n!}(1-x)_n(1-x)^n $ ^+^ $x^x = \sum_{n=0}^\infty \prod_{k=1}^n (1-x)\left(1-\frac{1+x}{k}\right) = \sum_{n=0}^\infty \frac{1}{n!}(1-x)_n(1-x)^n $ ^
  
 with the Pochhammer symbol $(1-x)_n:​=\prod_{k=0}^{n-1} (k-x)=\prod_{k=1}^n (k-(1+x))$. with the Pochhammer symbol $(1-x)_n:​=\prod_{k=0}^{n-1} (k-x)=\prod_{k=1}^n (k-(1+x))$.
Line 37: Line 39:
  
 >this must come from the Expression at the beginning, but I don't know how I arrived there. ​ >this must come from the Expression at the beginning, but I don't know how I arrived there. ​
->Maybe I also switched from $\int_0^1$ to $\int_1^0$.+>​Maybe ​there I switched from $x$ to $1-x$ or $\int_0^1$ to $\int_1^0$.
  
 $\int_0^1 \, x^x \, dx = \sum_{n=0}^\infty \frac{1}{n!} \int_0^1 \, P_n(x) ​ \, dx = \frac{1}{2} + \frac{1}{12} + \frac{1}{24} + \frac{131}{5040} + \frac{1093}{60480} + \dots$ $\int_0^1 \, x^x \, dx = \sum_{n=0}^\infty \frac{1}{n!} \int_0^1 \, P_n(x) ​ \, dx = \frac{1}{2} + \frac{1}{12} + \frac{1}{24} + \frac{131}{5040} + \frac{1093}{60480} + \dots$
Link to graph
Log In
Improvements of the human condition