Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
zeta_functions [2015/02/07 23:43]
nikolaj
zeta_functions [2015/02/07 23:47]
nikolaj
Line 7: Line 7:
  
 (maybe with parts/​states/​aspects $s_0, s_1, s_2, s_3, s_4,\dots$) (maybe with parts/​states/​aspects $s_0, s_1, s_2, s_3, s_4,\dots$)
- 
-$\dfrac{1}{S}$ ... flipped encoding, switches low and far behaviour, represents the weight of $X$. 
  
 == traceless part == == traceless part ==
Line 20: Line 18:
 == Q == == Q ==
  
-$Q(S):=\dfrac{1}{1-t}=\sum_{n=0}^\infty t^n+$\dfrac{1}{S}$ ... flipped encoding, switches low and far behavior, represents the weight of $X$.
  
-... flipped linear encoding of $Xwith emphasis on the interesting part. +$Q(t):​=\dfrac{1}{1-t}=\sum_{n=0}^\infty t^n
  
-It starts out as $Q(S)=1+t+{\marhcal ​O}(t^2) \approx 1-T$, but it diverges once $t$ reaches $1$.+It starts out as $Q(t)=1+t+{\mathcal ​O}(t^2) \approx 1-T$, but it diverges once $t$ reaches $1$.
  
-(And I observe $S\,Q(S)=2\,Q(S)-1$.)+(And I observe $S\,Q(t)=2\,Q(t)-1$.)
  
 == log == == log ==
Line 36: Line 34:
 We want to understand this, in a broad sense, as tamed version of the original: $\log(T) < T$.  We want to understand this, in a broad sense, as tamed version of the original: $\log(T) < T$. 
  
-But, for $Q(S)$ interpreted in a field, its proper singularity isn't tamed by $\log$: ​+But, for $Q(t)$ interpreted in a field, its proper singularity isn't tamed by $\log$: ​
  
-$\log(Q(S))=\log\left(\dfrac{1}{1-t}\right)=-\log(1-t)=\sum_{n=0}^\infty\frac{1}{n}t^n$+$\log(Q(t))=\log\left(\dfrac{1}{1-t}\right)=-\log(1-t)=\sum_{n=0}^\infty\frac{1}{n}t^n$
  
 still diverges at $\lim{t\to 1}$. still diverges at $\lim{t\to 1}$.
  
 == zeta == == zeta ==
-$\zeta(S)$ ... Some gluing together of data of $S$. +$\zeta_S$ ... Some gluing together of data of $S$. 
  
 Sometimes zetas are somewhat obscured using $\exp$'​s chained with $\log$'​s,​ in the spirit of above. Sometimes zetas are somewhat obscured using $\exp$'​s chained with $\log$'​s,​ in the spirit of above.
Line 53: Line 51:
  
 == Riemann zeta == == Riemann zeta ==
-For primes $p$, set $S_p=1-p^{-z}$ and define+For primes $p$, set $t_z=p^{-z}$ and define
  
-$\zeta_\text{Riemann}(z):​=\prod Q(S_p)=\prod_\text{primes p}\frac{1}{1-p^{-z}}$.+$\zeta_\text{Riemann}(z):​=\prod Q(t_z)=\prod_\text{primes p}\frac{1}{1-p^{-z}}$.
  
 == Polylog == == Polylog ==
Link to graph
Log In
Improvements of the human condition