Equivalence relation

Set

context $X$
definiendum $ \sim \in \text{EquivRel}(X) $
context $ \sim \in \mathrm{Rel}(X) $
$x,y,z\in X$
postulate $ x\sim x $
postulate $ x\sim y \Leftrightarrow y\sim x $
postulate $ x\sim y \land y\sim z \Leftrightarrow x\sim z $

Discussion

The relation $\sim$ is an equivalence relation, if it's in the intersection of all reflexive, all symmetric and all transitive relation. Hence

Reference

Wikipedia: Equivalence relation

Parents

Subset of

Reflexive relation, Symmetric relation, Transitive relation