Gamma function
Function
definition | $\Gamma: \mathbb C\setminus\{-k\ |\ k\in\mathbb N\}\to \mathbb N$ |
definition | $\Gamma(z) := \begin{cases} \int_0^\infty\ \ t^{z-1}\ \mathrm{e}^{-t}\ \mathrm d t & \mathrm{if}\ \mathrm{Re}(z)>0 \\\\ \frac{1}{z}\Gamma(z+1) & \mathrm{else} \end{cases}$ |
Discussion
Theorems
$n\in\mathbb N\land n\neq 0 \implies \Gamma(n)=(n-1)! $ |
$\Gamma(z+1) = z\cdot\Gamma(z) $ |
$\Gamma(z)\cdot\Gamma(1-z) =\frac{\pi}{\sin(\pi\ z)} $ |
$\Gamma(z)\cdot\Gamma(z+1/2)=2^{1-2z}\ \pi^{1/2}\ \Gamma(2z) $ |
Reference
Context
Equivalent to