definiendum | $\mathrm{it}: \mathbb R^3 \to \mathbb R$ |
definiendum | $\langle \tau_K,\beta,n \rangle \mapsto \int_0^\infty\ \ t^{n-1}\ \mathrm{e}^{-(t/\tau_K)^\beta}\ \mathrm d t$ |
$ \mathrm{it}(\tau_K,\beta,n)=\frac{\tau_K^n}{\beta}\Gamma(\frac{n}{\beta}) $ |
---|
Wikipedia: Stretched exponential function