context | ${\bf C},{\bf D}$ … small category |
context | $F$ in ${\bf D}\longrightarrow{\bf C}$ |
context | $G$ in ${\bf C}\longrightarrow{\bf D}$ |
definiendum | $\Phi$ in $\mathrm{it}$ |
postulate | $\Phi$ in $\mathrm{Hom}_{\bf C}(F-,=)\cong\mathrm{Hom}_{\bf D}(-,G=)$ |
Here $\mathrm{Hom}_{\bf C}(F-,=),\mathrm{Hom}_{\bf D}(-,G=)$ in ${\bf Set}^{{\bf D}\times {\bf C}}$.
Observe that if $\mathrm{Hom}_{\bf C}(F-,=)\cong\mathrm{Hom}_{\bf C}(-,G=)$, then $\mathrm{Hom}_{\bf C}(F-,B)$ in ${\bf Set}^{\bf D}$ is represented by $GB$ and $\mathrm{Hom}_{\bf C}(A,G-)$ in in ${\bf Set}^{\bf C}$ is represented by $FA$.
Let both ${\bf C}$ and ${\bf D}$ be the category ${\bf Set}$, which has products and exponential objects. Fix some objects (sets) $A$ and $Y$. Many examples can be thought of as variation of the pretty obvious relation
$\mathrm{Hom}_{\bf Set}(*\times A,Y)\cong\mathrm{Hom}_{\bf Set}(A,Y):= Y^A\cong\mathrm{Hom}_{\bf Set}(*,Y^A)$
where $*$ is a one-element set, but that's an unnecessary restriction:
Consider any set $X$. Indeed, we have
$\mathrm{Hom}_{\bf Set}(X\times A,Y)\cong\mathrm{Hom}_{\bf Set}(X,Y^A)$
and this is a hom-set adjunction
$\mathrm{Hom}_{\bf Set}(FX,Y)\cong\mathrm{Hom}_{\bf Set}(X,GY)$
if we define the Action of $F$ on object via $FX:=X\times A$ (Cartesian product) and let the action of $G$ on object be given by $GY:=Y^A$ (function space from $A$ to $Y$).
== Idea ==
More generally, view the left adjoint $F$ as A-“thickening” of ist argument ($X$), enabling to attack data, and view $G$ as the A-indexing's of aspects of it's argument $Y$, enabling to consider processes.
If ${\bf C}\neq{\bf D}$, then viewing $G$ as indexing may be harder.
Similarly, for propositions
$\left((X\land A)\implies Y\right)\leftrightarrow\left(X\implies(A\implies Y)\right)$
Here the A-“thickening” side says you have more arugments to prove $Y$ to begin with, while the “$A$-indexing's” side means you only demonstrate A-conditional truth of $Y$.
For example in the category of groups
$\mathrm{Hom}(X\otimes A,Y)\cong\mathrm{Hom}(X,\mathrm{Hom}(A,Y))$
$\langle A,\le\rangle$, $\langle B,\le'\rangle$ … posets, and $F:A\to B,G:B\to A$ … monotone functions, then Galois connection =
$(F(a)\le b)\leftrightarrow(a\le'G(b))$
If we look at the morphisms from the corresponding Counit-unit adjunction,
$\eta_Y:{\mathrm{Hom}}(Y, GFY)$
resp.
$\epsilon_Y:{\mathrm{Hom}}(FGY, Y)$
at least for sets the way in which those must be defined should be clear from how they map
$Y$ to $(A\times Y)^A$
resp.
$(A\times Y^A)$ to $Y$.
The first can only be a direct embedding
$\eta_Y(y):=\lambda a.\, \langle a,y\rangle$
and the second is an evaluation
$\epsilon_Y(\langle a,f\rangle) := f(a)$
Wikipedia: Adjoint functors (category theory),