Counit-unit adjunction
Collection
context | $F$ in ${\bf D}\longrightarrow{\bf C}$ |
context | $G$ in ${\bf C}\longrightarrow{\bf D}$ |
definiendum | $\langle\varepsilon,\eta\rangle$ in $F\dashv G$ |
inclusion | $\varepsilon, \eta$ … my nice nats $\left(F,G\right)$ |
for all | $X\in{\bf C}, Y\in{\bf D}$ |
postulate | $\varepsilon_{FY}\circ F(\eta_Y)=1_{FY}$ |
postulate | $G(\varepsilon_X)\circ \eta_{GX}=1_{GX}$ |
Elaboration
The pair $\langle\varepsilon,\eta\rangle$ being nice nats for $F$ and $G$ means
$\varepsilon:FG\xrightarrow{\bullet}1_{\bf C}$
$\eta:1_{\bf D}\xrightarrow{\bullet}GF$
Idea
Counit-unit adjunctions should be contrasted with my equivalence of categories, which is another special case of nice nats. In the case of equivalences, $\langle\varepsilon,\eta\rangle$ are isomorphisms
$\alpha$ in $FG\cong 1_{\bf C}$
$\beta$ in $1_{\bf D}\cong GF$
In the case of equivalence, we can go from a category ${\bf D}$ along $F$ (to the image of ${\bf D}$ in ${\bf C}$, call that “image 1”) and then back along $G$ (the image of “image 1” in ${\bf D}$, call it “image 2”) and find the same (${\bf D}$ and “image 2” are actually isomorphic). This possibility for invertibility means nothing was lost when passing from ${\bf D}$ to “image 1”.
In the case of an adjunction, not both nats are invertible. However, we need not go two times along a functor to invert! We already know about an left-invertibility relation of $\eta$ (either in the form $F(\eta_Y)$ or $\eta_{GX}$) once we go to the first image.
$\varepsilon_{FY}\circ F(\eta_Y)=1_{FY}$
$G(\varepsilon_X)\circ \eta_{GX}=1_{GX}$
There is also the combined case where you have an equivalence where the natural transformations are related in the sense of above - this is called an adjoint equivalence.
Inducing hom-set adjunctions
Say you're given an arrow $f$ from or to the images of one of the functors (in either ${\mathrm{Hom}}(FX,Y)$ or ${\mathrm{Hom}}(X,GY)$). We can now pre- or post-compose with arrows formed from $\eta$ and $\epsilon$, use the functors on arrows and thus algebraically find an image of $f$ in the other category.
Of course, each identity morphisms $1_{FX}:{\mathrm{Hom}}(FX,FX)$ in ${\bf C}$ corresponds to a component $\eta_X:{\mathrm{Hom}}(X,GFX)$ of $\eta:1_{\bf D}\xrightarrow{\bullet}GF$. And the claim here is that not only
$1_{FX}\leftrightarrow \eta_X$
or even
${\mathrm{Hom}}(FX,FX)\cong{\mathrm{Hom}}(X,GFX)$,
but in fact
${\mathrm{Hom}}(FX,Y)\cong{\mathrm{Hom}}(X,GY)$ |
---|
It's not that hard do the construction in both directions, after you've written down the types of $\eta,\epsilon, F, G$ before you.
As universals
For another perspective relating to universal morphisms, see On universal morphisms (31.10.2014).
To monads
Having an adjoint functor pair really means you also got a nice pair of natural transofmrations (for which functors are only a conditions). Given any functor $G$ (w.l.o.g, say you're in ${\bf D}$ and the functor out of it is $G$), then if there is an $F$ so that $F\dashv G$, you got yourself a monad.
Theorems
It's important to note that as soon as (the fmap of one of) the adjoint functors are full and faithful, the adjunction provides and equivalence of categories.
Terminology/Notation
To remember the symbol of the counit and unit, maybe it helps to point out that $\varepsilon$ kinda looks like a $c$ and $\eta$ kinda looks like a turned around $u$.
The arrow $\eta:1_{\bf D}\xrightarrow{\bullet}GF$ called the “unit” (or “return”, in the programming world). Here a mnemonic I cam up with:
tfw oneitis returns, becomes your GF and wants the D
The functor $F$ in $F\dashv G$ is the left adjoint. Analogously, $G$ is the right adjoint functor.
Examples
power set/list monad, also list-monad ⇔ set to free monoid
Reference
Wikipedia: Adjoint functors (category theory)