Measure

Set

context $\Sigma \in \mathrm{SigmaAlgebra}(X) $
definiendum $ \mu\in \mathrm{measure}(\Sigma)$
context $E\in \Sigma$
context $S\in \mathrm{Sequence}(\Sigma)$
inclusion $\mu:\Sigma\to \overline{\mathbb R} $
postulate $ \mu(E)\ge 0$
postulate $ \mu(\emptyset)=0 $
postulate $ \mu\left(\bigcup_{j=1}^\infty S_j\right)=\sum_{j=1}^\infty \mu(S_j) $

Reference

Wikipedia: Measure


Context

σ-algebra, Extended real number line, Infinite series

Equivalent to

Measure space