Measure space

Set

context $X $
definiendum $ \langle\!\langle X,\Sigma,\mu \rangle\!\rangle$ in it
postulate $ \Sigma \in \mathrm{SigmaAlgebra}(X) $
postulate $ \mu\in \mathrm{Measure}(\Sigma) $

Discussion

A measure space is a measurable space together with a fixed measure.

Reference

Wikipedia: Measure

Parents

Equivalent to

Context

Link to graph
Log In
Improvements of the human condition