Metric
Set
context
$ X $ … set
definiendum
$d\in$ it
postulate
$d:X\times X \to \mathbb{R}_+$
postulate
$ d(x,y)=0 \implies x=y$
postulate
$ d(x,y)=d(y,x)$
postulate
$ d(x,y)\le d(x,p)+d(p,y)$
Discussion
Reference
Wikipedia:
Metric
Parents
Subset of
Binary function
Equivalent to
Metric space
Context
Non-negative real number