Set limes inferior

Set

context $A\in \text{Seq}(X)$
definition $\underset{n\to\infty}{\liminf}A_n\equiv{\bigcap_{n=1}^\infty}\left({\bigcup_{k=n}^\infty}A_n\right)$

Ramifications

We have that

$\underset{n\to\infty}{\limsup}A_n\subseteq \underset{n\to\infty}{\liminf}A_n,$

see set limes superior. If moreover

$\underset{n\to\infty}{\limsup}A_n=\underset{n\to\infty}{\liminf}A_n,$

then we call it

$\underset{n\to\infty}{\lim}A_n$

and say $A$ is convergent.

Reference

Wikipedia: Limit superior and limit inferior

Discussion

For a more possibly more elucidating explaination, see my answer in this Math.Se thread this Math.SE thread

Parents

Parameterized set

Parameter refinement of

Sequence intersection

Sequence union