Processing math: 16%

Set limes superior

Set

context ASeq(X)
definition lim sup

Ramifications

We have that

\underset{n\to\infty}{\limsup}A_n\subseteq \underset{n\to\infty}{\liminf}A_n,

see Set limes inferior. If moreover

\underset{n\to\infty}{\limsup}A_n=\underset{n\to\infty}{\liminf}A_n,

then we call it

\underset{n\to\infty}{\lim}A_n

and say A is convergent.

Reference

Discussion

For a more possibly more elucidating explaination, see my answer in this Math.Se thread this Math.SE thread

Parents

Parameterized set

Parameter refinement of

Link to graph
Log In
Improvements of the human condition