Set limes inferior

Set

context $A\in \text{Seq}(X)$
definition $\underset{n\to\infty}{\liminf}A_n\equiv{\bigcap_{n=1}^\infty}\left({\bigcup_{k=n}^\infty}A_n\right)$

Ramifications

We have that

$\underset{n\to\infty}{\limsup}A_n\subseteq \underset{n\to\infty}{\liminf}A_n,$

see set limes superior. If moreover

$\underset{n\to\infty}{\limsup}A_n=\underset{n\to\infty}{\liminf}A_n,$

then we call it

$\underset{n\to\infty}{\lim}A_n$

and say $A$ is convergent.

Reference

Discussion

For a more possibly more elucidating explaination, see my answer in this Math.Se thread this Math.SE thread

Parents

Parameterized set

Parameter refinement of

Link to graph
Log In
Improvements of the human condition