Arithmetic structure of natural numbers
Set
definiendum | $\langle \mathbb N,+,\cdot \rangle$ |
$ m=S(k) $ | |
postulate | $n + 0 = n$ |
postulate | $n + m = S(n) + k$ |
postulate | $n \cdot 0 = 0$ |
postulate | $n \cdot m = n + (n \cdot k) $ |
Discussion
todo: rewrite the defintion in my current notation
We'll often omit the multiplication sign.