Arithmetic structure of real numbers
Set
postulate | r+Rs={q+Qp | (q∈r)∧(p∈s)} |
postulate | r−Rs={q−Qp | (q∈r)∧(p∈Q∖s)} |
postulate | −Rr={q−Qp | (p∈Q∖r)∧(q<0)} |
postulate | r≥0∧s≥0⟹r⋅Rs={q⋅Qp | (q∈r)∧(p∈s)∧(q,p≥0)}∪{q | (q∈Q)∧(q<0)} |
postulate | r≥0∧s<0⟹r⋅Rs=−(r⋅R(−s)) |
postulate | r<0∧s≥0⟹r⋅Rs=−((−r)⋅Rs) |
postulate | r<0∧s<0⟹r⋅Rs=(−r)⋅R(−s) |
postulate | r≥0∧s>0⟹r/Rs={q/Qp | (q∈r)∧(p∈Q∖s)} |
postulate | r≥0∧s<0⟹r/Rs=−(r/R(−s)) |
postulate | r<0∧s>0⟹r/Rs=−((−r)/Rs) |
postulate | r<0∧s<0⟹r/Rs=(−r)/R(−s) |
The operations +Q and ⋅Q on the right hand sides are these of arithmetic structure of rational numbers.
Discussion
Reference
Parents
Context
Element of