Bernoulli numbers
Function
definiendum | $B:\mathbb N\to\mathbb Q$ |
for all | $z\in \mathbb C$ |
postulate | $\frac{z}{\mathrm{e}^z-1}=\sum_{k=0}^\infty B_k\frac{1}{k!}z^k$ |
Discussion
Examples
$B_0=1$
$B_1=-\tfrac{1}{2}$
$B_2=\frac{1}{6}$
$B_4=-\frac{1}{30}$
$B_6=-\frac{1}{42}$