Binomial coefficient over the complex numbers
Function
definition | ?? |
definition | {x\choose{y}} := \dfrac{1}{\Gamma(y+1)}\dfrac{\Gamma(x+1)}{\Gamma((x+1)-(y+1)+1)} |
(1+z)^s
Sum[Gamma[1 + x]/(Gamma[1 + x - y] Gamma[1 + y])z^y, {y, 0, \[Infinity]}]
Discussion
For natural numbers n\ge{k} we get
{n\choose{k}} = \dfrac{1}{k!}\dfrac{n!}{(n-k)!}
Theorems
{m\choose{m}} = 1
{m\choose{0}} = 1
Pascal's identity (recursive formula)
{n\choose{k}} = {n\choose{k-1}} + {n-1\choose{k-1}}
From this it's also clear that {n\choose{k}} is a sum of 1's, i.e. an integer.
(*Random generalization of linear such recursive schemes*) f[m_, 0] = a[m]; f[0, m_] = b[m]; f[m_, m_] = c[m]; f[n_, k_] := A*f[n, k - 1] + B*f[n - 1, k] + C*f[n - 1, k - 1] Table[{n, k, f[n, k] // sexy}, {n, 1, 4}, {k, 1, 4}] // TableForm
Reference
Wikipedia: Binomial coefficient