Bipartite complete graph
Set
context | V,E … set |
definiendum | ⟨V,E,ψ⟩∈it(E,V) |
postulate | ⟨V,E,ψ⟩ … undirected graph |
range | X∩Y=∅ |
range | x∈X |
range | y∈Y |
postulate | ∃X,Y. (∀u,v. {u,v}∈im(ψ)⟹(u∈X∧v∈Y)∨(v∈X∧u∈Y))∧(∀x,y. {x,y}∈im ψ) |
Discussion
Let G be a bipartite complete graph with parts X and Y. Then G is bipartite complete if each x∈X connects to each y∈Y.