Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
boltzmann_equation [2013/12/17 23:15]
nikolaj
boltzmann_equation [2015/06/15 17:48]
nikolaj
Line 1: Line 1:
 ===== Boltzmann equation ===== ===== Boltzmann equation =====
-==== Definition ​==== +==== Set ==== 
-| @#88DDEE: $ {\bf K}:\mathbb R^3\times\mathbb R^3\times\mathbb t\to\mathbb R $ | +| @#55CCEE: context ​    | @#55CCEE: $ {\bf K}:\mathbb R^3\times\mathbb R^3\times\mathbb t\to\mathbb R $ | 
-| @#DDDDDD: $ :: {\bf K}({\bf x},{\bf v},t)$ | +| @#DDDDDD: range       | @#DDDDDD: $ :: {\bf K}({\bf x},{\bf v},t)$ | 
  
-| @#88DDEE: $ S\in\mathbb N $ |+| @#55CCEE: context ​    | @#55CCEE: $ S\in\mathbb N $ |
 | $i,​j\in\text{range}(S)$ | | $i,​j\in\text{range}(S)$ |
-| @#88DDEE: $ m_i\in \mathbb R^* $ |  +| @#55CCEE: context ​    | @#55CCEE: $ m_i\in \mathbb R^* $ |  
-| @#88DDEE: $ I_{ij}: \mathbb R^3\times[-\tfrac{\pi}{2},​\tfrac{\pi}{2}]\times[0,​2\pi]\to\mathbb R $ | +| @#55CCEE: context ​    | @#55CCEE: $ I_{ij}: \mathbb R^3\times[-\tfrac{\pi}{2},​\tfrac{\pi}{2}]\times[0,​2\pi]\to\mathbb R $ | 
-| @#DDDDDD: $ :: I_{ij}({\bf v},​\vartheta,​\varphi) $ | +| @#DDDDDD: range       | @#DDDDDD: $ :: I_{ij}({\bf v},​\vartheta,​\varphi) $ | 
  
 The integer $S$ denote the species, $m_i$ their respective masses and $I_{ij}$ the differential cross sections for two particle collisions. The integer $S$ denote the species, $m_i$ their respective masses and $I_{ij}$ the differential cross sections for two particle collisions.
  
-| @#88DDEE: $ {\bf v'},\ {\bf v'}_1 : \mathbb R^{2\times 3}\to \mathbb R^3 $ |  +| @#55CCEE: context ​    | @#55CCEE: $ {\bf v'},\ {\bf v'}_1 : \mathbb R^{2\times 3}\to \mathbb R^3 $ |  
-| @#DDDDDD: $ :: {\bf v'​}({\bf v'​},​{\bf v}_1),\ {\bf V}_1({\bf v},{\bf v}_1) $ |+| @#DDDDDD: range       | @#DDDDDD: $ :: {\bf v'​}({\bf v'​},​{\bf v}_1),\ {\bf V}_1({\bf v},{\bf v}_1) $ |
  
-| @#FFBB00: $ {\bf f} \in \mathrm{it} $ |+| @#FFBB00: definiendum ​| @#FFBB00: $ {\bf f} \in \mathrm{it} $ |
  
-| @#55EE55: $ f_i:\mathbb R^3\times\mathbb R^3\times\mathbb R\to\mathbb R_+ $ | +| @#55EE55: postulate ​  | @#55EE55: $ f_i:\mathbb R^3\times\mathbb R^3\times\mathbb R\to\mathbb R_+ $ | 
-| @#DDDDDD: $ :: f_i({\bf x},{\bf v},t)$ | +| @#DDDDDD: range       | @#DDDDDD: $ :: f_i({\bf x},{\bf v},t)$ | 
  
-| @#DDDDDD: $ J[f_i|f_j]({\bf x},{\bf v},t) \equiv \int\int g\ I_{ij}(g,​\vartheta,​\varphi)\ \left(f_i({\bf x},{\bf v'​}({\bf v},{\bf v}_1),​t)\cdot f_j({\bf x},{\bf v'​}_1({\bf v},{\bf v}_1),​t)-f_i({\bf x},{\bf v},t)\cdot f_j({\bf x},{\bf v}_1,​t)\right)\ \mathrm d\Omega(\vartheta,​\varphi)\ \mathrm d^3v_1 $  | +| @#DDDDDD: range       | @#DDDDDD: $ J[f_i|f_j]({\bf x},{\bf v},t) \equiv \int\int g\ I_{ij}(g,​\vartheta,​\varphi)\ \left(f_i({\bf x},{\bf v'​}({\bf v},{\bf v}_1),​t)\cdot f_j({\bf x},{\bf v'​}_1({\bf v},{\bf v}_1),​t)-f_i({\bf x},{\bf v},t)\cdot f_j({\bf x},{\bf v}_1,​t)\right)\ \mathrm d\Omega(\vartheta,​\varphi)\ \mathrm d^3v_1 $  | 
-| @#55EE55: $ \left(\frac{\mathrm \partial}{\partial t}+{\bf v}\cdot\nabla_{\bf x}+\frac{1}{m_i}{\bf K}\cdot\nabla_{\bf v}\right)f_i = \sum_{k=1}^S J[f_i|f_j]$ ​ |+| @#55EE55: postulate ​  | @#55EE55: $ \left(\frac{\mathrm \partial}{\partial t}+{\bf v}\cdot\nabla_{\bf x}+\frac{1}{m_i}{\bf K}\cdot\nabla_{\bf v}\right)f_i = \sum_{j=1}^S J[f_i|f_j]$ ​ | 
 + 
 +>​I'​m not sure about the summation "​$\cdots = \sum_{j=1}^S J[f_i|f_j]$"​ here --- check that.
  
 ==== Discussion ==== ==== Discussion ====
Line 42: Line 44:
 at the fixed point velocity ${\bf v}$. The second term is more involved, since it doesn'​t represent the loss at ${\bf v}$, but the gain: It's the sum of processes of pairs particles with velocities ${\bf v'​},​{\bf v'​}_1$,​ which end up with particles having the velocity ${\bf v}$ and any other velocity ${\bf v}_1$. at the fixed point velocity ${\bf v}$. The second term is more involved, since it doesn'​t represent the loss at ${\bf v}$, but the gain: It's the sum of processes of pairs particles with velocities ${\bf v'​},​{\bf v'​}_1$,​ which end up with particles having the velocity ${\bf v}$ and any other velocity ${\bf v}_1$.
  
 +=== Note ===
 +<​code>​
 +$Assumptions = {kT > 0, n > -1, \[CapitalTheta] > 0};
 +
 +f[EE_] = E^(-(EE/​kT))*
 +   ​E^(-(EE^2/​\[CapitalTheta]^2))/​(E^(\[CapitalTheta]^2/​(2 kT)^2)
 +       ​Sqrt[\[Pi]] /2 \[CapitalTheta] Erfc[\[CapitalTheta]/​(2 kT)]);
 +       
 +Integrate[f[EE] EE^n, {EE, 0, \[Infinity]}]
 +</​code>​
 === Reference === === Reference ===
 Wikipedia: ​ Wikipedia: ​
Line 49: Line 61:
 === Subset of === === Subset of ===
 [[PDE system]] [[PDE system]]
-=== Context ​===+=== Related ​===
 [[BBGKY hierarchy]] [[BBGKY hierarchy]]
Link to graph
Log In
Improvements of the human condition