Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
boltzmann_equation [2014/03/21 11:11]
127.0.0.1 external edit
boltzmann_equation [2015/06/15 17:48]
nikolaj
Line 21: Line 21:
  
 | @#DDDDDD: range       | @#DDDDDD: $ J[f_i|f_j]({\bf x},{\bf v},t) \equiv \int\int g\ I_{ij}(g,​\vartheta,​\varphi)\ \left(f_i({\bf x},{\bf v'​}({\bf v},{\bf v}_1),​t)\cdot f_j({\bf x},{\bf v'​}_1({\bf v},{\bf v}_1),​t)-f_i({\bf x},{\bf v},t)\cdot f_j({\bf x},{\bf v}_1,​t)\right)\ \mathrm d\Omega(\vartheta,​\varphi)\ \mathrm d^3v_1 $  | | @#DDDDDD: range       | @#DDDDDD: $ J[f_i|f_j]({\bf x},{\bf v},t) \equiv \int\int g\ I_{ij}(g,​\vartheta,​\varphi)\ \left(f_i({\bf x},{\bf v'​}({\bf v},{\bf v}_1),​t)\cdot f_j({\bf x},{\bf v'​}_1({\bf v},{\bf v}_1),​t)-f_i({\bf x},{\bf v},t)\cdot f_j({\bf x},{\bf v}_1,​t)\right)\ \mathrm d\Omega(\vartheta,​\varphi)\ \mathrm d^3v_1 $  |
-| @#55EE55: postulate ​  | @#55EE55: $ \left(\frac{\mathrm \partial}{\partial t}+{\bf v}\cdot\nabla_{\bf x}+\frac{1}{m_i}{\bf K}\cdot\nabla_{\bf v}\right)f_i = \sum_{k=1}^S J[f_i|f_j]$ ​ |+| @#55EE55: postulate ​  | @#55EE55: $ \left(\frac{\mathrm \partial}{\partial t}+{\bf v}\cdot\nabla_{\bf x}+\frac{1}{m_i}{\bf K}\cdot\nabla_{\bf v}\right)f_i = \sum_{j=1}^S J[f_i|f_j]$ ​ | 
 + 
 +>​I'​m not sure about the summation "​$\cdots = \sum_{j=1}^S J[f_i|f_j]$"​ here --- check that.
  
 ==== Discussion ==== ==== Discussion ====
Line 42: Line 44:
 at the fixed point velocity ${\bf v}$. The second term is more involved, since it doesn'​t represent the loss at ${\bf v}$, but the gain: It's the sum of processes of pairs particles with velocities ${\bf v'​},​{\bf v'​}_1$,​ which end up with particles having the velocity ${\bf v}$ and any other velocity ${\bf v}_1$. at the fixed point velocity ${\bf v}$. The second term is more involved, since it doesn'​t represent the loss at ${\bf v}$, but the gain: It's the sum of processes of pairs particles with velocities ${\bf v'​},​{\bf v'​}_1$,​ which end up with particles having the velocity ${\bf v}$ and any other velocity ${\bf v}_1$.
  
 +=== Note ===
 +<​code>​
 +$Assumptions = {kT > 0, n > -1, \[CapitalTheta] > 0};
 +
 +f[EE_] = E^(-(EE/​kT))*
 +   ​E^(-(EE^2/​\[CapitalTheta]^2))/​(E^(\[CapitalTheta]^2/​(2 kT)^2)
 +       ​Sqrt[\[Pi]] /2 \[CapitalTheta] Erfc[\[CapitalTheta]/​(2 kT)]);
 +       
 +Integrate[f[EE] EE^n, {EE, 0, \[Infinity]}]
 +</​code>​
 === Reference === === Reference ===
 Wikipedia: ​ Wikipedia: ​
Link to graph
Log In
Improvements of the human condition