Bounded linear operator
Set
context | $V,W$ … normed vector spaces |
definiendum | $A\in\mathrm{BoundedLinOp}(V,W)$ |
postulate | $A\in\mathrm{Hom}(V,W)$ |
range | $M\in\mathbb R, M>0$ |
$v\in V$ | |
postulate | $\exists M.\ \Vert Av\Vert_W\le M\Vert v\Vert_V $ |
Discussion
A linear operator on a metrizable vector space is bounded if and only if it is continuous.
Reference
Wikipedia: Bounded linear operator