Classical Hamiltonian system

Set

definiendum $\langle \mathcal M, H\rangle \in \mathrm{it} $
postulate $ \mathcal M$ … smooth manifold
range $ \Gamma_{\mathcal M}\equiv \mathcal M\times T^*\mathcal M $
postulate $ H:\Gamma_{\mathcal M} \times \mathbb R \to \mathbb R $
postulate $ H $ … differentiable in $\Gamma_{\mathcal M}$

Discussion

The Hamiltonian function is related to the Lagrangian function via Legendre transformation.

Reference

Wikipedia: Hamiltonian mechanics,


Parents

Context

Requirements

Link to graph
Log In
Improvements of the human condition