Determinant via multilinear functionals

Set

context $V$ … finite dimensional $\mathcal F$-vector space
definiendum $\mathrm{det}:L(V,V)\to \mathcal F$
range $n\equiv \mathrm{dim}(V)$
$M\in \mathrm{MultiLin}(V^n)$
$ v_1,\dots,v_n\in V $
$A\in L(V,V)$
postulate $ M(A\ v_1,\dots,A\ v_n) = \mathrm{det}(A)\cdot M(v_1,\dots,v_n) $

Discussion

Theorems

  • The determinant is an invariant of linear operators on finite-dimensional vector spaces.
  • $\mathrm{det}(AB)=\mathrm{det}(A)\cdot \mathrm{det}(B)$
  • $\mathrm{det}(Id)=1$
  • $\mathrm{det}(A)\ne 0$ is $A$ is a linear isomorphism
  • $\mathrm{det}(A)\ne 0\Rightarrow \mathrm{det}(A^{-1})=\mathrm{det}(A)^{-1}$

Reference

Wikipedia: Determinant

Parents

Context

Link to graph
Log In
Improvements of the human condition