Determinant via multilinear functionals
Set
context | V … finite dimensional F-vector space |
definiendum | det:L(V,V)→F |
range | n≡dim(V) |
M∈MultiLin(Vn) | |
v1,…,vn∈V | |
A∈L(V,V) |
postulate | M(A v1,…,A vn)=det(A)⋅M(v1,…,vn) |
Discussion
Theorems
- The determinant is an invariant of linear operators on finite-dimensional vector spaces.
- det(AB)=det(A)⋅det(B)
- det(Id)=1
- det(A)≠0 is A is a linear isomorphism
- det(A)≠0⇒det(A−1)=det(A)−1
Reference
Wikipedia: Determinant