Exponential function
Function
definition | exp:C→C |
definition | exp(z):=∑∞k=01k!zk |
Discussion
Theorems
ez=exp(z) |
---|
Because per definition ez:=exp(z⋅ln(e)).
ez≠0 |
---|
ddzef(z)=ddzf(z)⋅ef(z) |
---|
a,b,r,θ∈R
exp(iθ)=cos(θ)+isin(θ) |
---|
∀a,b. ∃r,θ. a+ib=reiθ |
---|
Remarks
We have
(x+y)m=∑mk=0m!k!(m−k)!xkym−k
so
(1+b(n)x)n=∑nk=0(b(n)−kn!(n−k)!)xkk!
(Note that here the summands depend on the upper sum bound n, this sum doesn't make for an infinite sum of partial sums - the to be partial sums are all different)
So
(1+xn)n=∑nk=0(n!(n−k)!nk)xkk!=∑nk=0ak(n)xkk!
with ak(n)=∏kj=1(1−k−jn)
also
=∑nk=0∏kj=1(1j−1n(kj−1))x
References
Wikipedia: Exponential function, Matrix exponential, Exponential map