This is an old revision of the document!


Exponential function

Definition

$\mathrm{exp}: \mathbb C\to\mathbb C$
$\mathrm{exp}(z):=\sum_{k=0}^\infty \frac{1}{k!} z^k $

Discussion

Definitions

Eulers number:

$\mathrm{e}\equiv \mathrm{exp}(1)$

Theorems

$\mathrm{e}^z = \mathrm{exp}(z) $

Because per definition $\mathrm{e}^z:=\mathrm{exp}(z\cdot \mathrm{ln}(\mathrm{e}))$.

$\mathrm{e}^z \neq 0 $

For any polynomial $p$ and sufficiently often differentiable function $f$ we have

$p\left(\frac{\mathrm d}{\mathrm d z}\right)\ \mathrm{e}^{f(z)} = p\left(\frac{\mathrm d}{\mathrm d z}\right)f(z)\cdot \mathrm{e}^{f(z)} $

References

Parents

Requirements

Link to graph
Log In
Improvements of the human condition