Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
extended_quantum_action_functional_._finite [2014/03/12 00:14]
nikolaj
extended_quantum_action_functional_._finite [2015/01/30 12:55]
nikolaj
Line 1: Line 1:
 ===== Extended quantum action functional . finite ===== ===== Extended quantum action functional . finite =====
-==== partial ​function ==== +==== Partial ​function ==== 
-| @#88DDEE: $ \mathbb K = \mathbb C \lor \mathbb R $ | +| @#55CCEE: context ​    | @#55CCEE: $ \mathbb K = \mathbb C \lor \mathbb R $ | 
-| @#88DDEE: $ m\in\mathbb N $ | +| @#55CCEE: context ​    | @#55CCEE: $ m\in\mathbb N $ | 
-| @#88DDEE: $ D $ .... self-adjoint operator in $\mathbb K^m$ with well behaved inverse at least for $D+i\,​\varepsilon\,​\mathrm 1$ | +| @#55CCEE: context ​    | @#55CCEE: $ D $ .... self-adjoint operator in $\mathbb K^m$ with well behaved inverse at least for $D+i\,​\varepsilon\,​\mathrm 1$ | 
- +| @#FFBB00: definiendum ​| @#FFBB00: $Z:(\mathbb K^2\to\mathbb R)\to \mathbb K^4\to \mathbb K $ | 
-| @#FFBB00: $Z:(\mathbb K^2\to\mathbb R)\to \mathbb K^4\to \mathbb K $ | +| @#FFBB00: definiendum ​| @#FFBB00: $Z_{\mathcal L_\mathrm{int}}(J,​K,​\phi,​\psi):​=\mathrm{e}^{i\hbar^{-1}\sum_{i=1}^m\mathcal L_\mathrm{int}\left(-i\,​\hbar\frac{\partial}{\partial J_i},​-i\,​\hbar\frac{\partial}{\partial K_i}\right)} \left( \mathrm{e}^{i\,​\hbar^{-1} \left\langle J\left|\,​\mathcal{R}_\varepsilon\,​\right|K\right\rangle}\cdot\mathrm{e}^{Z_\text{source}(J,​K,​\phi,​\psi)}\right)$ |
-| @#FFBB00: $Z_{\mathcal L_\mathrm{int}}(J,​K,​\phi,​\psi):​=\mathrm{e}^{i\hbar^{-1}\sum_{i=1}^m\mathcal L_\mathrm{int}\left(-i\,​\hbar\frac{\partial}{\partial J_i},​-i\,​\hbar\frac{\partial}{\partial K_i}\right)} \left( \mathrm{e}^{i\,​\hbar^{-1} \left\langle J\left|\,​\mathcal{R}_\varepsilon\,​\right|K\right\rangle}\cdot\mathrm{e}^{Z_\text{source}(J,​K,​\phi,​\psi)}\right)$ | +
 | @#BBDDEE: $\mathcal{R}_\varepsilon\equiv-\left(D+i\,​\varepsilon\,​\mathrm{1}\right)^{-1}$ | | @#BBDDEE: $\mathcal{R}_\varepsilon\equiv-\left(D+i\,​\varepsilon\,​\mathrm{1}\right)^{-1}$ |
 | @#BBDDEE: $Z_\text{source}(J,​K,​\phi,​\psi):​=i\,​\hbar^{-1}\left(\left\langle J\left|\right. \phi\right\rangle+\left\langle K\left|\right. \psi\right\rangle\right)$ | | @#BBDDEE: $Z_\text{source}(J,​K,​\phi,​\psi):​=i\,​\hbar^{-1}\left(\left\langle J\left|\right. \phi\right\rangle+\left\langle K\left|\right. \psi\right\rangle\right)$ |
  
-==== Discussion ​====+----- 
 +=== Discussion ===
 The operator $\mathcal{R}_\varepsilon$ is denoted the response function because it relates the classical free field to the source, $(D+i\,​\varepsilon)\phi=-J$. The brackets are the standard inner product on $\mathbb C^n$ or $\mathbb R^n$. The finite quantum action functional presented here can be generalized by  The operator $\mathcal{R}_\varepsilon$ is denoted the response function because it relates the classical free field to the source, $(D+i\,​\varepsilon)\phi=-J$. The brackets are the standard inner product on $\mathbb C^n$ or $\mathbb R^n$. The finite quantum action functional presented here can be generalized by 
  
Line 92: Line 91:
 {{qed_two-three-four_vertex-diagrams.png}} {{qed_two-three-four_vertex-diagrams.png}}
  
-==== Parents ====+-----
 === Context === === Context ===
 [[Square matrix]], [[Self-adjoint operator]] [[Square matrix]], [[Self-adjoint operator]]
Link to graph
Log In
Improvements of the human condition