Processing math: 100%

Finite exponential series

Function

context $ m\in{\mathbb N}
definition expn:CC
definition expn(z):=nk=01k!zk

ddzexp0(z)=1

expn(z)=expn1(z)+1n!zn

Theorems

ddzexp0(z)=0

ddzexpn(z)=expn1(z)=expn(z)1n!zn

Alternative

Another series which has az as limit is the one given below. It has the nice feature that for integers n<m, it evaluates to p(m,n)=am exactly.

p[m_, z_] := Sum[(a - 1)^k/k! \!\(
\*UnderoverscriptBox[\(\[Product]\), \(j = 0\), \(k - 1\)]\((z - 
       j)\)\), {k, 0, m}] // Expand

Table[Table[p[m, z], {z, 1, m}], {m, 1, 7}]     // 
  Simplify // TableForm

i = 3;
2^i // N
p[5, i] /. {a -> 2} // N

i = 3 + 1/2;
2^i // N
p[5, i] /. {a -> 2} // N

References

Context

Link to graph
Log In
Improvements of the human condition