Finite exponential series
Function
context | $ m\in{\mathbb N} |
definition | expn:C→C |
definition | expn(z):=∑nk=01k!zk |
ddzexp0(z)=1
expn(z)=expn−1(z)+1n!zn
Theorems
ddzexp0(z)=0
ddzexpn(z)=expn−1(z)=expn(z)−1n!zn
Alternative
Another series which has az as limit is the one given below. It has the nice feature that for integers n<m, it evaluates to p(m,n)=am exactly.
p[m_, z_] := Sum[(a - 1)^k/k! \!\( \*UnderoverscriptBox[\(\[Product]\), \(j = 0\), \(k - 1\)]\((z - j)\)\), {k, 0, m}] // Expand Table[Table[p[m, z], {z, 1, m}], {m, 1, 7}] // Simplify // TableForm i = 3; 2^i // N p[5, i] /. {a -> 2} // N i = 3 + 1/2; 2^i // N p[5, i] /. {a -> 2} // N
References
Wikipedia: Exponential function, Matrix exponential, Exponential map