Finite exponential series
Function
context | $ m\in{\mathbb N} |
definition | $\exp_n: \mathbb C\to\mathbb C$ |
definition | $\exp_n(z):=\sum_{k=0}^n \dfrac{1}{k!} z^k $ |
$\frac{\mathrm d}{\mathrm d z}\mathrm{exp}_0(z) = 1 $
$\mathrm{exp}_{n}(z) = \mathrm{exp}_{n-1}(z) + \dfrac{1}{n!} z^n$
Theorems
$\frac{\mathrm d}{\mathrm d z}\mathrm{exp}_0(z) = 0 $
$\frac{\mathrm d}{\mathrm d z}\mathrm{exp}_n(z) = \mathrm{exp}_{n-1}(z) = \mathrm{exp}_n(z) - \dfrac{1}{n!} z^n$
Alternative
Another series which has $a^z$ as limit is the one given below. It has the nice feature that for integers $n<m$, it evaluates to $p(m,n)=a^m$ exactly.
p[m_, z_] := Sum[(a - 1)^k/k! \!\( \*UnderoverscriptBox[\(\[Product]\), \(j = 0\), \(k - 1\)]\((z - j)\)\), {k, 0, m}] // Expand Table[Table[p[m, z], {z, 1, m}], {m, 1, 7}] // Simplify // TableForm i = 3; 2^i // N p[5, i] /. {a -> 2} // N i = 3 + 1/2; 2^i // N p[5, i] /. {a -> 2} // N
References
Wikipedia: Exponential function, Matrix exponential, Exponential map