On syntax $\blacktriangleright$ Guideline


What's different between 'An apple pie from scratch' the AoC graph itself
  • Book-like character and hence linear. To read it, follow the red path in the axiomsofchoice graph.
  • The concepts are development in a logical/mathematical fashion too, while the graph shows a not necessarily linear web of dependencies.
  • I do math for physics sake, not for mathematics. So provable theorems are just used right away. Emphasis on concepts relevant for physics are generally emphasized (e.g. Green functions $\gg$ Dedekind cuts).
  • The tour guide is Self-contained. Also as concise as possible and hence completely top-down: Always introduce the mathematical object first which a) needs least and more rudimentary tools b) has most models and special cases. Theorem hierarchy is developed (studied).
  • Syntax and semantics: One should try to differntiate the general syntactic theory and its semantics. Especially for the more general framworks, I try to keep track of core semantics/examples at the same time.

The focus of the presentation is motivated in Perspective. We care for general mathematical structures and versatile computational knowledge…

Framework emphasis (versatile):
Universal properties

Structure emphasis (established important structures for physics):
Geometrical formulations of theories
(Hamiltonian formulations of Dynamical systems)

Computational knowledge
Evaluations of integrals and sums
Formal power series, Difference Calculus, Falling powers etc.
integrals over differential equations (as motivation, remember: stochastic differential = integral relation)
Green functions

Sequel of

Link to graph
Log In
Improvements of the human condition