Hilbert space mean value
Set
context | V…Hilbert space |
definiendum | ¯⋅−:Observable(V)×V→R |
definiendum | ¯Aψ:=⟨ψ|A ψ⟩‖ |
Discussion
One can rewrite this in many ways using:
- \langle \psi | A\ \psi \rangle=\langle A \rangle_\psi
- \Vert \psi \Vert^2=\langle \psi | \psi \rangle=\langle 1 \rangle_\psi
For any vector \phi we have…
- \Delta_\psi A = \left(\overline{\left(A-\overline A\right)^2}\right)^\frac{1}{2} = \overline{A^2}-\overline{A}^2=\frac{\Vert(A-\overline A)\psi\Vert}{\Vert\psi\Vert} is called non-negative mean fluctuation.
- \gamma=\overline{(A-\overline{A})(B-\overline{B})}/(\Delta A\cdot \Delta B)=(\overline{AB}-\overline{A}\overline{B})/(\Delta A\cdot \Delta B) is called the correlation coefficient.
Theorems
AB=BA\implies \gamma\in [-1,1].