Processing math: 22%

Hilbert space mean value

Set

context V…Hilbert space
definiendum ¯:Observable(V)×VR
definiendum ¯Aψ:=ψ|A ψ

Discussion

One can rewrite this in many ways using:

  • \langle \psi | A\ \psi \rangle=\langle A \rangle_\psi
  • \Vert \psi \Vert^2=\langle \psi | \psi \rangle=\langle 1 \rangle_\psi

For any vector \phi we have…

  • \Delta_\psi A = \left(\overline{\left(A-\overline A\right)^2}\right)^\frac{1}{2} = \overline{A^2}-\overline{A}^2=\frac{\Vert(A-\overline A)\psi\Vert}{\Vert\psi\Vert} is called non-negative mean fluctuation.
  • \gamma=\overline{(A-\overline{A})(B-\overline{B})}/(\Delta A\cdot \Delta B)=(\overline{AB}-\overline{A}\overline{B})/(\Delta A\cdot \Delta B) is called the correlation coefficient.

Theorems

AB=BA\implies \gamma\in [-1,1].

Parents

Context

Link to graph
Log In
Improvements of the human condition