Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
infinite_geometric_series [2016/07/10 21:58]
nikolaj
infinite_geometric_series [2016/07/22 15:20]
nikolaj
Line 1: Line 1:
-===== Niemand ​series ===== +===== Infinite geometric ​series ===== 
-==== Note ==== +==== Function ​==== 
-We consider ​$a_{n,N}$, viewed as a sequence (in $N$) of sequences ​(in $n$).+| @#FF9944: definition ​ | @#​FF9944: ​$Q_\infty: \{z\in{\mathbb C}\mid \vert{z}\vert<​1\}\to\mathbb C
 +| @#FF9944: definition ​ | @#​FF9944: ​$Q_\infty(z):​=\sum_{k=0}^\infty z^k $ |
  
-The map+-----
  
-$a_{n,​N} ​\mapsto ​\sum_{n=0}^N a_{n,N}$+$Q_\infty(z)=\dfrac{1}{1-z}$
  
-removes the $n$-index.+This can also be written as
  
-Then+$\sum_{k=0}^\infty\left(\dfrac{1}{1+z}\right)^k = 1+\dfrac{1}{z}$
  
-$\sum_{n=0}^N \lim_{N\to\infty} a_{n,N}$+and
  
-removes the second. ​+$\sum_{k=0}^\infty\left(1-\dfrac{1}{z}\right)^k = z$
  
-=== Examples === +orfor $z>0and $X<1+zresp. $X<​z/​(z-1)$
-== a{n,N} constant in N == +
-For $a_{n,N}constant in $N$, the series ​$\sum_{n=0}^N a_{n,N}is just the sequence of partial sums.+
  
-== Riemann integral == +$\sum_{k=0}^\infty\left(\dfrac{1}{1+z}\right)^kX^k ​1+\dfrac{1}{z}+(X-1)(z-1) \,z\dfrac{1}{z+X(1-z)}$
-$f$ a function and $x_0,x_1numbers.+
  
-With+and
  
-$a_{n,N}:=(x_1-x_0)\dfrac{1}{N}\,f\left(x_0+(x_1-x_0)\dfrac{n}{N}\right)$+$\sum_{k=0}^\infty\left(1-\dfrac{1}{z}\right)^kX^k = z+(X-1)\left(1+\dfrac{1}{z}\right)\dfrac{1}{z+(1-X)}$
  
-we have that $\sum_{n=0}^N a_{n,N}is the Riemann ​integral.+== q-Integral == 
 +For a function ​$f$, the q-integral ​from $0$ to $1$ ("​$z$-integral"​ if we stick to our notation above) is defined as
  
-== Exponential function == +$\sum_{k=0}^\infty f(z^k)\,z^k=\dfrac{1}{1-z}\cdot\int_0^1 f(s)\,{\mathrm d}_zs$
-$a_{n,N} = \prod_{j=1}^k\left(1-\frac{k-j}{n}\right) ​\cdot \dfrac{z^k}{k!} $+
  
-$\sum_{n=0}^N a_{n,​N} ​\left(1+\frac{z}{n}\right)^n$+== Related notes ==
  
-$\lim_{N\to\infty}\sum_{n=0}^N a_{n,N}={\mathrm e}^z$+$z = \sum_{k=0}^\infty\left(z^{-1}(z-1)\right)^k = \sum_{k=0}^\infty\left(1-z^{-1}\right)^k ​\sum_{k=0}^\infty \sum_{m=0}^k {k \choose m}(-z)^{-m} ​$
  
-<​code>​ +In fact
-Sum[Product[1 - (k - j)/n, {j, 1, k}] z^k/k!, {k, 0, n}] // Simplify +
-</​code>​+
  
-What's interesting here is that also+$ \sum_{k=0}^{n-1} \sum_{m=0}^k {k \choose m}(-z)^{-m} = z\left(1-\left(\dfrac{z-1}{z}\right)^n\right)$
  
-$\sum_{n=0}^\infty \lim_{N\to\infty} a_{n,N} = {\mathrm e}^z$ +See also [[Niemand sequences]].
- +
-== Inverting z == +
-$a_{n,N} = \dfrac{n}{k+1} \prod_{j=1}^k\left(j-n\right) \cdot \dfrac{z^k}{k!}$ +
- +
-$\sum_{n=0}^N a_{n,N} = \dfrac{1}{z} - \dfrac{1}{z}(1-z)^n$ +
- +
-<​code>​ +
-Sum[Product[1 - (k - j)/n, {j, 1, k}z^k/k!, {k, 0, n}// Simplify +
-Sum[Product[-(n - j), {j, 1, k}] (1/(k + 1)) z^k/k!, {k, 0, n}] // Simplify +
-</​code>​+
  
 === References === === References ===
Link to graph
Log In
Improvements of the human condition