Infinite geometric series
Function
definition | Q∞:{z∈C∣|z|<1}→C |
definition | Q∞(z):=∑∞k=0zk |
Q∞(z)=11−z
This can also be written as
∑∞k=0(11+z)k=1+1z
and
∑∞k=0(1−1z)k=z
or, for z>0 and X<1+z resp. X<z/(z−1)
∑∞k=0(11+z)kXk=1+1z+(X−1)(z−1)z1z+X(1−z)
and
∑∞k=0(1−1z)kXk=z+(X−1)(1+1z)1z+(1−X)
q-Integral
For a function f, the q-integral from 0 to 1 (“z-integral” if we stick to our notation above) is defined as
∑∞k=0f(zk)zk=11−z⋅∫10f(s)dzs
Related notes
z = \sum_{k=0}^\infty\left(z^{-1}(z-1)\right)^k = \sum_{k=0}^\infty\left(1-z^{-1}\right)^k = \sum_{k=0}^\infty \sum_{m=0}^k {k \choose m}(-z)^{-m}
In fact
\sum_{k=0}^{n-1} \sum_{m=0}^k {k \choose m}(-z)^{-m} = z\left(1-\left(\dfrac{z-1}{z}\right)^n\right)
See also Niemand sequences.
Powers
Sum[Binomial[-s, k] x^k, {k, 0, \[Infinity]}] Series[(1 - x)^-s, {x, 0, 4}] Binomial[-s, 3]; % - (-s)!/(3! ((-s) - 3)!) // FullSimplify %% + 1/6 (2 s + 3 s^2 + s^3) // FullSimplify
References
Wikipedia: Geometric series, Geometric progression