Processing math: 88%

Infinite geometric series

Function

definition Q:{zC|z|<1}C
definition Q(z):=k=0zk

Q(z)=11z

This can also be written as

k=0(11+z)k=1+1z

and

k=0(11z)k=z

or, for z>0 and X<1+z resp. X<z/(z1)

k=0(11+z)kXk=1+1z+(X1)(z1)z1z+X(1z)

and

k=0(11z)kXk=z+(X1)(1+1z)1z+(1X)

q-Integral

For a function f, the q-integral from 0 to 1 (“z-integral” if we stick to our notation above) is defined as

k=0f(zk)zk=11z10f(s)dzs

z = \sum_{k=0}^\infty\left(z^{-1}(z-1)\right)^k = \sum_{k=0}^\infty\left(1-z^{-1}\right)^k = \sum_{k=0}^\infty \sum_{m=0}^k {k \choose m}(-z)^{-m}

In fact

\sum_{k=0}^{n-1} \sum_{m=0}^k {k \choose m}(-z)^{-m} = z\left(1-\left(\dfrac{z-1}{z}\right)^n\right)

See also Niemand sequences.

Powers
Sum[Binomial[-s, k] x^k, {k, 0, \[Infinity]}]
Series[(1 - x)^-s, {x, 0, 4}]
Binomial[-s, 3];
% - (-s)!/(3! ((-s) - 3)!) // FullSimplify
%% + 1/6 (2 s + 3 s^2 + s^3) // FullSimplify

References

Context

Link to graph
Log In
Improvements of the human condition