Finite geometric series
Function
context | n∈N |
definition | Qn:C→C |
definition | Qn(z):=∑nk=0zk |
todo: In fact
∑nk=0akbn−k=1a−b(an+1−bn+1)
so
∑nk=0zk=11−z(1−zn+1)
i.e.
11−z=11−z⋅zn∑nk=0zk
i.e.
zn+1−1=(z−1)∑nk=0zk
Remarks
The last line can be used to show that a bunch of ugly expressions have a factor. You may extend it to
(zn+1−(a+1))+a=(z−1)∑nk=0zk
etc.
The proof of the infinitude of primes using Fermat numbers uses this.
In C, the equation (xb)n=1 is solved by x=b⋅e2πikn, so
an−bn=(a−b)∏n−1k=1(a−b⋅e2πikn)
n = 6; Product[a - b*Exp[2 \[Pi] I*k/n], {k, 1, n}] // FullSimplify
References
Wikipedia: Geometric series, Geometric progression