Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
infinite_geometric_series [2016/07/10 22:33]
nikolaj
infinite_geometric_series [2016/07/22 15:19]
nikolaj
Line 24: Line 24:
 $\sum_{k=0}^\infty\left(1-\dfrac{1}{z}\right)^kX^k = z+(X-1)\left(1+\dfrac{1}{z}\right)\dfrac{1}{z+(1-X)}$ $\sum_{k=0}^\infty\left(1-\dfrac{1}{z}\right)^kX^k = z+(X-1)\left(1+\dfrac{1}{z}\right)\dfrac{1}{z+(1-X)}$
  
-== Notes ==+== q-Integral == 
 +For a function $f$, the q-integral from $0$ to $1$ is defined as 
 + 
 +$\sum_{k=0}^\infty f(z^k)\,​z^k=\dfrac{1}{1-z}\int_0^1 f(s){\mathrm d}_zs$ 
 + 
 +== Related notes ==
  
 $z = \sum_{k=0}^\infty\left(z^{-1}(z-1)\right)^k = \sum_{k=0}^\infty\left(1-z^{-1}\right)^k = \sum_{k=0}^\infty \sum_{m=0}^k {k \choose m}(-z)^{-m} $ $z = \sum_{k=0}^\infty\left(z^{-1}(z-1)\right)^k = \sum_{k=0}^\infty\left(1-z^{-1}\right)^k = \sum_{k=0}^\infty \sum_{m=0}^k {k \choose m}(-z)^{-m} $
Line 32: Line 37:
 $ \sum_{k=0}^{n-1} \sum_{m=0}^k {k \choose m}(-z)^{-m} = z\left(1-\left(\dfrac{z-1}{z}\right)^n\right)$ $ \sum_{k=0}^{n-1} \sum_{m=0}^k {k \choose m}(-z)^{-m} = z\left(1-\left(\dfrac{z-1}{z}\right)^n\right)$
  
-See also [[Niemand ​series]].+See also [[Niemand ​sequences]].
  
 === References === === References ===
Link to graph
Log In
Improvements of the human condition