Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
infinite_geometric_series [2016/07/10 22:33]
nikolaj
infinite_geometric_series [2019/09/23 21:19]
nikolaj
Line 24: Line 24:
 $\sum_{k=0}^\infty\left(1-\dfrac{1}{z}\right)^kX^k = z+(X-1)\left(1+\dfrac{1}{z}\right)\dfrac{1}{z+(1-X)}$ $\sum_{k=0}^\infty\left(1-\dfrac{1}{z}\right)^kX^k = z+(X-1)\left(1+\dfrac{1}{z}\right)\dfrac{1}{z+(1-X)}$
  
-== Notes ==+== q-Integral == 
 +For a function $f$, the q-integral from $0$ to $1$ ("​$z$-integral"​ if we stick to our notation above) is defined as 
 + 
 +$\sum_{k=0}^\infty f(z^k)\,​z^k=\dfrac{1}{1-z}\cdot\int_0^1 f(s)\,​{\mathrm d}_zs$ 
 + 
 +== Related notes ==
  
 $z = \sum_{k=0}^\infty\left(z^{-1}(z-1)\right)^k = \sum_{k=0}^\infty\left(1-z^{-1}\right)^k = \sum_{k=0}^\infty \sum_{m=0}^k {k \choose m}(-z)^{-m} $ $z = \sum_{k=0}^\infty\left(z^{-1}(z-1)\right)^k = \sum_{k=0}^\infty\left(1-z^{-1}\right)^k = \sum_{k=0}^\infty \sum_{m=0}^k {k \choose m}(-z)^{-m} $
Line 32: Line 37:
 $ \sum_{k=0}^{n-1} \sum_{m=0}^k {k \choose m}(-z)^{-m} = z\left(1-\left(\dfrac{z-1}{z}\right)^n\right)$ $ \sum_{k=0}^{n-1} \sum_{m=0}^k {k \choose m}(-z)^{-m} = z\left(1-\left(\dfrac{z-1}{z}\right)^n\right)$
  
-See also [[Niemand ​series]].+See also [[Niemand ​sequences]]. 
 + 
 +== Powers == 
 +<​code>​ 
 +Sum[Binomial[-s,​ k] x^k, {k, 0, \[Infinity]}] 
 +Series[(1 - x)^-s, {x, 0, 4}] 
 +Binomial[-s,​ 3]; 
 +% - (-s)!/(3! ((-s) - 3)!) // FullSimplify 
 +%% + 1/6 (2 s + 3 s^2 + s^3) // FullSimplify 
 +</​code>​
  
 === References === === References ===
Link to graph
Log In
Improvements of the human condition