Inner group automorphism group

Set

context $\langle\!\langle G,\cdot\rangle\!\rangle$ … group
definition $\mathrm{Inn}(G)\equiv\langle\!\langle \{h\mapsto g\cdot h\cdot g^{-1}\,\mid\,g\in G\},*\rangle\!\rangle$
inclusion $*$ … pointwise function product on $G^G$

Elaboration

Explicitly, pointwise function product means

$(\phi*\psi)(h):=\phi(h)\cdot\psi(h)$

Reference

Wikipedia: Automorphism


Subset of

Requirements

Link to graph
Log In
Improvements of the human condition