Module
Set
context | M,R |
postulate | ⟨M,R,∗⟩∈module(M,R) |
context | ⟨M,R,∗⟩∈leftModule(M,R) |
context | M∈abelianGroup(M) |
Now denote the multiplication in the ring R by “ ˆ∗ ”.
r,s∈R |
postulate | r∗s=s∗r |
Discussion
A module is a left module with a commutative ring acting on the group.
One generally speaks of an R-module over M. Here R and M are just sets.
Reference
Wikipedia: Module