Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
natural_logarithm_of_complex_numbers [2015/06/26 22:07]
nikolaj
natural_logarithm_of_complex_numbers [2016/07/22 15:08]
nikolaj
Line 6: Line 6:
 ----- -----
 >todo: [[Complex argument]] >todo: [[Complex argument]]
 +
 +== Limits ==
 +$\lim_{x\to 0}x\ln(x)=0$
  
 == Differentiation and integrals == == Differentiation and integrals ==
  
-$\int \left(x^n\right)'​\ln(x^n)\,​{\mathrm d}x=x^n\left(\ln(x^n)-1\right)$+$\int \ln(x^n)\,​{\mathrm d}x^n=\int \left(x^n\right)'​\ln(x^n)\,​{\mathrm d}x=x^n\left(\ln(x^n)-1\right)$
  
 == Series == == Series ==
 +At least around $z=0$ (I think for $|z|<1$)
 +
 +$\ln{\left(\frac{1}{1-z}\right)} = \sum_{n=1}^\infty \frac{z^n}{n}$
 +
 +or
  
-$\ln{\left(1+z\right)}=-\sum_{n=1}^\infty \frac{(-z)^n}{n}$+$\ln{\left(1+z\right)} = -\sum_{n=1}^\infty \frac{(-z)^n}{n}$
  
-and sofrom this+From this series in $(-z)^n$, if we always constitutive positive ​and negative germswe get
  
-$\ln{\left(\frac{1}{1-z}\right)}=\sum_{n=1}^\infty \frac{z^n}{n}$+$\ln{\left(1+z\right)} = z - \sum_{n=1}^\infty \left(\dfrac{1}{2n}-\dfrac{z}{2n+1}\right) z^{2n}$
  
 Note that this implies that $\exp$ maps the series on the right to $\frac{1}{1-z}=1+\sum_{n=1}^\infty z^n$. Note that this implies that $\exp$ maps the series on the right to $\frac{1}{1-z}=1+\sum_{n=1}^\infty z^n$.
Link to graph
Log In
Improvements of the human condition