Natural logarithm of complex numbers
Set
Limits
lim
Differentiation and integrals
\int \ln(x^n)\,{\mathrm d}x^n=\int \left(x^n\right)'\ln(x^n)\,{\mathrm d}x=x^n\left(\ln(x^n)-1\right)
Series
At least around z=0 (I think for |z|<1)
\ln{\left(\frac{1}{1-z}\right)} = \sum_{n=1}^\infty \frac{z^n}{n}
or
\ln{\left(1+z\right)} = -\sum_{n=1}^\infty \frac{(-z)^n}{n}
From this series in (-z)^n, if we always constitutive positive and negative germs, we get
\ln{\left(1+z\right)} = z - \sum_{n=1}^\infty \left(\dfrac{1}{2n}-\dfrac{z}{2n+1}\right) z^{2n}
Note that this implies that \exp maps the series on the right to \frac{1}{1-z}=1+\sum_{n=1}^\infty z^n.
The following is related to Minus twelve . Note:
\left(\dfrac{z}{\ln(1+z)}\right)^n=1+\dfrac{n}{2}z+\dfrac{n}{2}\dfrac{3n-5}{12}z^2+\dfrac{n}{2}\dfrac{(n-2)(n-3)}{24}z^3+\dots.
In particular, this tells us that
\sum_{k=0}^\infty k\,z^k-\dfrac{1}{\ln(z)^2}=-\dfrac{1}{12}+{\mathcal O}\left((z-1)^1\right)