Natural logarithm of real numbers
Function
definiendum | ln:R∗+→R |
postulate | ln=exp−1 |
∫y11xdx=ln(y)
∫y011+xdx=ln(1+y)
Log[a] == Log[b] + Integrate[1/(t+b)-1/(t+a),{t,0,Infinity}]
The function x↦xx−1log(x) is one without bad behaviours (singularities) on [0,∞).