Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
niemand_sequence [2016/07/13 13:27]
nikolaj
niemand_sequence [2016/07/22 15:13] (current)
nikolaj
Line 35: Line 35:
  
 == Exponential function == == Exponential function ==
-$a_{n,N} = \left(\prod_{k=1}^n\left(1-\dfrac{k-1}{N}\right)\right) c(N)^n\dfrac{z^n}{n!} $+>todo: compare the following construction with the two q-exponentials ​
  
-$\sum_{n=0}^N ​a_{n,N} = \left(1+c(N)\dfrac{z}{N}\right)^N$+$a_{n,N} = \left(\prod_{k=1}^n\left(1-\dfrac{k-1}{N}\right)\right) \dfrac{1}{n!}\left(\dfrac{C(N)\,​k\,​z}{1-\frac{k\zeta}{N}}\right)^$
  
-For $c(N)=k$+${\mathrm e}_N(z):​=\sum_{n=0}^N a_{n,N} = \left(1+\dfrac{1}{1-\frac{k\zeta}{N}}c(N)\dfrac{z}{N}\right)^N$ 
 + 
 +Fulfills 
 + 
 +${\mathrm e}_N'​(\zeta)=k\,{\mathrm e}_N(\zeta)$ 
 + 
 +(only for $z=\zeta$, not for all of $z$ like the exponential function) 
 + 
 +and with $c(N)=1$, we have
  
 $\lim_{N\to\infty}\sum_{n=0}^N a_{n,​N}={\mathrm e}^{k\,z}$ $\lim_{N\to\infty}\sum_{n=0}^N a_{n,​N}={\mathrm e}^{k\,z}$
  
 <​code>​ <​code>​
-Sum[Product[1 - (k - 1)/N, {k, 1, n}] c[N]^n z^n/n!, {n, 0, N}] // Simplify+Sum[Product[1 - (k - 1)/N, {k, 1, n}] ((C[N] z)/(1 - (k \[Zeta])/​N))^n/n!, {n, 0, N}] // simple
 </​code>​ </​code>​
  
Link to graph
Log In
Improvements of the human condition